S1-13 ダイレクトセンシング技術を用いた原位置浄化工事設計の事例

Case Study: Designing In-Situ Remediation of Contaminated Soil and Groundwater with Direct Sensing Technology

〇小川えみ1・草場周作1 1株式会社アイ・エス・ソリューション

図2.6 塩素化VOCs分布調査結果(D-1、17、16、18、3)

図2.7 透水性調査結果(D-1、3およびD-5、8)

3. 化子酸化剂仍选定			主	朘化剤		活性化剤			
<u>原位置浄化技術の選定</u> ① 微生物分解適用困難 ② 持続性が高く浸透しやすい過硫酸ナトリウムによる化学	試験 系	活性化法	過硫酸 ナトリウム (土壌に 対してwt%)	PS剤 (土壌に対し 過硫酸でwt%)	水酸化 ナトリウム (g/L)	鉄(II)触媒 (過硫酸に 対するモル比)	キレート剤 (過硫酸に 対するモル比)	過炭酸 ナトリウム (過硫酸に 対するモル比)	
		アルカリ性pH	2.0	0.0	18	0.0	0.0	0.0	
3 イレート削を加え、イレート-並属融媒活住化法が有効と 予相		<u>キレート-金属触媒(鉄(II)触媒を添加)</u>	2.0	0.0	0.0	0.02	0.004	0.0	
		キレート-金属触媒(地盤の金属を利用) 過酸化水素	2.0	0.0	0.0	0.0	0.004	0.0	
净化対象地盤の工場。地下水を用いて、活性化適 (加) 動計のたままた			0.0	2.0	0.0	0.0	0.0	0.0	
酸法のIR試験を美施	対照		0.0	0.0	0.0	0.0	0.0	0.0	
 30 0 0 0 0 0 0 0 0 0 0 0 0 0									
凶3.1 ILEの涙皮推修									
4. 原位置浄化工事の設計									
事前調査・ 浅い層に局所的な汚染の残留がないことを確認できた・ 高濃度汚染範囲を詳細に把握できた				事前調査にて確認された高濃度汚染箇所に対し、下記工法を実施し、 塩素化VOCs汚染の除去を行うこととした。					

- ① 地下水揚水により地中のTCEを薬剤の注入工法が有効な量まで 低減させる(原位置抽出)
- キレート剤+過硫酸ナトリウムの注入により地中の塩素化VOCsの (2) 化学分解を行う(原位置分解)

5. 参考文献等

TR試験

1) Furman OS, Teel AL, Watts RJ(2010): Mechanism of Base Activation of Persulfate, Environmental Science & Technology, Vol. 44, No. 16, pp.6423—6428.

•キレート-金属触媒による活性化法を用いた過硫酸法が最適

• 地盤に元々含まれる鉱物中の金属を用いることが可能

2) Petri BG, Watts RJ, Tsitonaki A, Crimi M, Thomson NR, Teel AL(2011): Fundamentals of ISCO Using Persulfate, In Situ Chemical Oxidation for Groundwater Remediation, pp.147-191.